JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Muscle fatigue experienced during maximal eccentric exercise is predictive of the plasma creatine kinase (CK) response.

Unaccustomed eccentric exercise may cause skeletal muscle damage with an increase in plasma creatine kinase (CK) activity. Although the wide variability among individuals in CK response to standardized lengthening contractions has been well described, the reasons underlying this phenomenon have not yet been understood. Therefore, this study investigated a possible correlation of the changes in muscle damage indirect markers after an eccentric exercise with the decline in muscle performance during the exercise. Twenty-seven healthy untrained male subjects performed three sets of 30 maximal isokinetic eccentric contractions of the knee extensors. The muscular work was recorded using an isokinetic dynamometer to assess muscle fatigue by means of various fatigue indices. Plasma CK activity, muscle soreness, and stiffness were measured before (pre) and one day after (post) exercise. The eccentric exercise bout induced significant changes of the three muscle damage indirect markers. Large inter-subject variability was observed for all criteria measured. More interestingly, the log (CK(post) /CK(pre)) and muscle stiffness appeared to be closely correlated with the relative work decrease (r = 0.84, r(2)  = 0.70 and r = 0.75, r(2)  = 0.56, respectively). This is the first study to propose that the muscle fatigue profile during maximal eccentric protocol could predict the magnitude of the symptoms associated with muscle damage in humans.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app