Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Purification and characterization of haloalkaline thermoactive, solvent stable and SDS-induced protease from Bacillus sp.: a potential additive for laundry detergents.

An extracellular haloalkaline, thermoactive, solvent stable, SDS-induced serine protease was purified and characterized from an alkali-thermo tolerant strain Bacillus sp. SM2014 isolated from reverse osmosis reject. The enzyme was purified to homogeneity with recovery of 54.4% and purity fold of 64. The purified enzyme was composed of single polypeptide of molecular mass about 71 kDa. The enzyme showed optimum activity at alkaline pH 10 and temperature 60°C. The km and Vmax for the enzyme was 0.57 mg/ml and 445.23 U/ml respectively. The enzyme showed novel catalytic ability at high pH (10), temperature (60°C) and salinity (3M). Moreover, the stability of enzyme in organic solvents (50% v/v) of logP ≥ 2 signified the prospective of this enzyme for peptide synthesis. The compatibility of the enzyme with surfactants and various detergent matrices together with wash performance test confirmed its potential applicability in laundry industry.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app