JOURNAL ARTICLE
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
Add like
Add dislike
Add to saved papers

FTY720-loaded poly(DL-lactide-co-glycolide) electrospun scaffold significantly increases microvessel density over 7 days in streptozotocin-induced diabetic C57b16/J mice: preliminary results.

BACKGROUND: Nanofiber scaffolds could improve islet transplant success by physically mimicking the shape of extracellular matrix and by acting as a drug-delivery vehicle. Scaffolds implanted in alternate transplant sites must be prevascularized or very quickly vascularized following transplantation to prevent hypoxia-induced islet necrosis. The local release of the S1P prodrug FTY720 induces diameter enlargement and increases in length density. The objective of this preliminary study was to evaluate length and diameter differences between diabetic and nondiabetic animals implanted with FTY720-containing electrospun scaffolds using intravital imaging of dorsal skinfold window chambers.

METHODS: Electrospun mats of randomly oriented fibers we created from polymer solutions of PLAGA (50:50 LA:GA) with and without FTY720 loaded at a ratio of 1:200 (FTY720:PLAGA by wt). The implanted fiber mats were 4 mm in diameter and ∼0.2 mm thick. Increases in length density and vessel diameter were assessed by automated analysis of images over 7 days in RAVE, a Matlab program.

RESULTS: Image analysis of repeated measures of microvessel metrics demonstrated a significant increase in the length density from day 0 to day 7 in the moderately diabetic animals of this preliminary study (P < .05). Furthermore, significant differences in length density at day 0 and day 3 were found between recently STZ-induced moderately diabetic and nondiabetic animals in response to FTY720 local release (P < .05, Student t test).

CONCLUSIONS: Driving the islet revascularization process using local release of factors, such as FTY720, from biodegradable polymers makes an attractive system for the improvement of islet transplant success. Preliminary study results suggest that a recently induced moderately diabetic state may potentiate the mechanism by which local release of FTY720 from polymer fibers increases length density of microvessels. Therefore, local release of S1P receptor-targeted drugs is under further investigation for improvement of transplanted islet function.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app