JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
Add like
Add dislike
Add to saved papers

Reciprocal actions of ATF5 and Shh in proliferation of cerebellar granule neuron progenitor cells.

Precise regulation of neuroprogenitor cell proliferation and differentiation is required for successful brain development, but the factors that contribute to this are only incompletely understood. The transcription factor ATF5 promotes proliferation of cerebral cortical neuroprogenitor cells and its down regulation permits their differentiation. Here, we examine the expression and regulation of ATF5 in cerebellar granule neuron progenitor cells (CGNPs) as well as the role of ATF5 in the transition of CGNPs to postmitotic cerebellar granule neurons (GCNs). We find that ATF5 is expressed by proliferating CGNPs in both the embryonic and postnatal cerebellar external granule layer (EGL) and in the rhombic lip, the embryonic structure from which the EGL arises. In contrast, ATF5 is undetectable in postmitotic GCNs. In highly enriched dissociated cultures of CGNPs and CGNs, ATF5 is expressed only in CGNPs. Constitutive ATF5 expression in CGNPs does not affect their proliferation or exit from the cell cycle. In contrast, in presence of sonic hedgehog (Shh), a mitogen for CGNPs, constitutively expressed ATF5 promotes CGNP proliferation and delays their cell cycle exit and differentiation. Conversely, ATF5 loss-of-function conferred by a dominant-negative form of ATF5 significantly diminishes Shh-stimulated CGNP proliferation and promotes differentiation. In parallel with its stimulation of CGNP proliferation, Shh enhances ATF5 expression by what appeared to be a posttranscriptional mechanism involving protein stabilization. These findings indicate a reciprocal interaction between ATF5 and Shh in which Shh stimulates ATF5 expression and in which ATF5 contributes to Shh-stimulated CGNP expansion.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app