JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Cellular responses of Saccharomyces cerevisiae at near-zero growth rates: transcriptome analysis of anaerobic retentostat cultures.

FEMS Yeast Research 2011 December
Extremely low specific growth rates (below 0.01 h(-1) ) represent a largely unexplored area of microbial physiology. In this study, anaerobic, glucose-limited retentostats were used to analyse physiological and genome-wide transcriptional responses of Saccharomyces cerevisiae to cultivation at near-zero specific growth rates. While quiescence is typically investigated as a result of carbon starvation, cells in retentostat are fed by small, but continuous carbon and energy supply. Yeast cells cultivated near-zero specific growth rates, while metabolically active, exhibited characteristics previously associated with quiescence, including accumulation of storage polymers and an increased expression of genes involved in exit from the cell cycle into G(0) . Unexpectedly, analysis of transcriptome data from retentostat and chemostat cultures showed, as specific growth rate was decreased, that quiescence-related transcriptional responses were already set in at specific growth rates above 0.025 h(-1) . These observations stress the need for systematic dissection of physiological responses to slow growth, quiescence, ageing and starvation and indicate that controlled cultivation systems such as retentostats can contribute to this goal. Furthermore, cells in retentostat do not (or hardly) divide while remaining metabolically active, which emulates the physiological status of metazoan post-mitotic cells. We propose retentostat as a powerful cultivation tool to investigate chronological ageing-related processes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app