JOURNAL ARTICLE

White matter microstructure in untreated first episode bipolar disorder with psychosis: comparison with schizophrenia

Lisa H Lu, Xiaohong Joe Zhou, Sarah K Keedy, James L Reilly, John A Sweeney
Bipolar Disorders 2011, 13 (7-8): 604-13
22085473

OBJECTIVES: White matter abnormalities have been reported in bipolar disorder. The present study aimed to investigate white matter integrity in untreated first episode patients with psychotic bipolar disorder using diffusion tensor imaging, and to compare observations with those from untreated first episode schizophrenia patients.

METHODS: Fractional anisotropy and mean diffusivity were measured in first episode psychotic patients with bipolar disorder (n = 13) or schizophrenia (n = 21) and healthy individuals (n = 18). Group differences were evaluated using voxel-based morphometry. Axial and radial diffusivity were examined in regions with altered fractional anisotropy in post-hoc analyses.

RESULTS: Patients with bipolar disorder showed lower fractional anisotropy than healthy controls in several white matter tracts. Compared with schizophrenia patients, bipolar disorder patients showed lower fractional anisotropy in the cingulum, internal capsule, posterior corpus callosum, tapetum, and occipital white matter including posterior thalamic radiation and inferior longitudinal fasciculus/inferior fronto-occipital fasciculus. Lower fractional anisotropy in bipolar disorder was characterized by increased radial diffusion rather than axial diffusion along the orientation of fiber tracts. Across several white matter tracts, both patient groups showed greater mean diffusivity than healthy individuals.

CONCLUSIONS: Selectively increased radial diffusivity in bipolar disorder patients suggests structural disorganization in fiber tract coherence of neurodevelopmental origin or alterations in myelin sheaths along fiber tracts. In contrast, increased isotropic diffusion along white matter tracts in schizophrenia patients with alterations in both radial and axial diffusivity suggests increased water content outside the axonal space. Thus, the present results suggest that different pathophysiological mechanisms may underlie white matter microstructural abnormalities in bipolar disorder and schizophrenia.

Full Text Links

Find Full Text Links for this Article

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read
22085473
×

Save your favorite articles in one place with a free QxMD account.

×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"