Add like
Add dislike
Add to saved papers

Multistage seizure detection techniques optimized for low-power hardware platforms.

Closed-loop neurostimulation devices that stimulate the brain to treat epileptic seizures have shown great promise in treating more than a third of the 2 million people with epilepsy in the United States alone whose seizures are currently nonresponsive to pharmaceutical treatment. Seizure detection algorithms facilitate responsive therapeutic intervention that is believed to increase the efficacy of neurostimulation by improving on its spatial and temporal specificity. Translating these signal processing algorithms into battery-powered, implantable devices poses a number of challenges that severely limit the computational power of the chosen algorithm. We propose a cascaded two-stage seizure detection algorithm that is computationally efficient (resulting in a low-power hardware implementation) without compromising on detection efficacy. Unlike traditional detection algorithms, the proposed technique does not explicitly require a "training" phase from individual to individual and, instead, relies on using features that result in distinct "patterns" at the electrographic seizure onset. We tested the algorithm on spontaneous clinical seizures recorded using depth electrodes from patients with focal intractable epilepsy and annotated by epileptologists at the University of Freiburg Medical Center, via the Freiburg database. The algorithm performs with a specificity and sensitivity of 99.82 and 87.5%, detecting seizures in less than 9.08% of their duration after onset. The proposed technique is also shown to be computationally efficient, facilitating low-power hardware implementation. This article is part of a Supplemental Special Issue entitled The Future of Automated Seizure Detection and Prediction.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Group 7SearchHeart failure treatmentPapersTopicsCollectionsEffects of Sodium-Glucose Cotransporter 2 Inhibitors for the Treatment of Patients With Heart Failure Importance: Only 1 class of glucose-lowering agents-sodium-glucose cotransporter 2 (SGLT2) inhibitors-has been reported to decrease the risk of cardiovascular events primarily by reducingSeptember 1, 2017: JAMA CardiologyAssociations of albuminuria in patients with chronic heart failure: findings in the ALiskiren Observation of heart Failure Treatment study.CONCLUSIONS: Increased UACR is common in patients with heart failure, including non-diabetics. Urinary albumin creatininineJul, 2011: European Journal of Heart FailureRandomized Controlled TrialEffects of Liraglutide on Clinical Stability Among Patients With Advanced Heart Failure and Reduced Ejection Fraction: A Randomized Clinical Trial.Review

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

Read by QxMD is copyright © 2021 QxMD Software Inc. All rights reserved. By using this service, you agree to our terms of use and privacy policy.

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app