Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Vancomycin promotes the bacterial autolysis, release of extracellular DNA, and biofilm formation in vancomycin-non-susceptible Staphylococcus aureus.

Staphylococcus aureus, an important human pathogen, is particularly adept at producing biofilms on implanted medical devices. Although antibiotic treatment of nonsusceptible bacteria will not kill these strains, the consequences should be studied. The present study focuses on investigating the effect of vancomycin on biofilm formation by vancomycin-non-susceptible S. aureus. Biofilm adherence assays and scanning electron microscopy demonstrated that biofilm formation was significantly enhanced following vancomycin treatment. Bacterial autolysis of some subpopulations was observed and was confirmed by the live/dead staining and confocal laser scanning microscopy. A significant increase in polysaccharide intercellular adhesin (PIA) production was observed by measuring icaA transcript levels and in a semi-quantitative PIA assay in one resistant strain. We show that the release of extracellular DNA (eDNA) via cidA-mediated autolysis is a major contributor to vancomycin-enhanced biofilm formation. The addition of xenogeneic DNA could also significantly enhance biofilm formation by a PIA-overproducing S. aureus strain. The magnitude of the development of the biofilm depends on a balance between the amounts of eDNA and PIA. In conclusion, sublethal doses of cell wall-active antibiotics like vancomycin induce biofilm formation through an autolysis-dependent mechanism in vancomycin-non-susceptible S. aureus.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app