JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Clenbuterol, a β2-adrenergic agonist, reciprocally alters PGC-1 alpha and RIP140 and reduces fatty acid and pyruvate oxidation in rat skeletal muscle.

Clenbuterol, a β2-adrenergic agonist, reduces mitochondrial content and enzyme activities in skeletal muscle, but the mechanism involved has yet to be identified. We examined whether clenbuterol-induced changes in the muscles' metabolic profile and the intrinsic capacity of mitochondria to oxidize substrates are associated with reductions in the nuclear receptor coactivator PGC-1 alpha and/or an increase in the nuclear corepressor RIP140. In rats, clenbuterol was provided in the drinking water (30 mg/l). In 3 wk, this increased body (8%) and muscle weights (12-17%). In red (R) and white (W) muscles, clenbuterol induced reductions in mitochondrial content (citrate synthase: R, 27%; W, 52%; cytochrome-c oxidase: R, 24%; W, 34%), proteins involved in fatty acid transport (fatty acid translocase/CD36: R, 36%; W, 35%) and oxidation [β-hydroxyacyl CoA dehydrogenase (β-HAD): R, 33%; W, 62%], glucose transport (GLUT4: R, 8%; W, 13%), lactate transport monocarboxylate transporter (MCT1: R, 61%; W, 37%), and pyruvate oxidation (PDHE1α, R, 18%; W, 12%). Concurrently, only red muscle lactate dehydrogenase activity (25%) and MCT4 (31%) were increased. Palmitate oxidation was reduced in subsarcolemmal (SS) (R, 30%; W, 52%) and intermyofibrillar (IMF) mitochondria (R, 17%; W, 44%) along with reductions in β-HAD activity (SS: R, 17%; W, 51%; IMF: R, 20%; W, 57%). Pyruvate oxidation was only reduced in SS mitochondria (R, 20%; W, 28%), but this was not attributable solely to PDHE1α, which was reduced in both SS (R, 21%; W, 20%) and IMF mitochondria (R, 15%; W, 43%). These extensive metabolic changes induced by clenbuterol were associated with reductions in PGC-1α (R, 37%; W, 32%) and increases in RIP140 (R, 23%; W, 21%). This is the first evidence that clenbuterol appears to exert its metabolic effects via simultaneous and reciprocal changes in the nuclear receptor coactivator PGC-1α and the nuclear corepressor RIP140.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app