Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

The biomechanics of plate repair of periprosthetic femur fractures near the tip of a total hip implant: the effect of cable-screw position.

Optimal surgical positioning of cable-screw pairs in repairing periprosthetic femur fractures near the tip of a total hip implant still remains unclear. No studies in the literature to date have developed a fully three-dimensional finite element (FE) model that has been validated experimentally to assess these injury patterns. The aim of the present study was to evaluate the biomechanical performance of three different implant-bone constructs for the fixation of periprosthetic femoral shaft fractures following total hip arthroplasty. Experimentally, three bone-plate repair configurations were applied to the periprosthetic synthetic femur fractured with a 5 mm gap near the tip of a total hip implant. Constructs A, B, and C, respectively, had successively larger distances between the most proximal and the most distal cable-screw pairs used to affix the plate. Specimens were oriented in 15 degrees adduction, subjected to 1000 N of axial force to simulate the single-legged stance phase of walking, and instrumented with strain gauges. Computationally, a linearly elastic and isotropic three-dimensional FE model was developed to mimic the experimental setup. Results showed excellent agreement between experimental versus FE analysis strains, yielding a Pearson linearity coefficient, R2, of 0.90 and a slope for the line of best data fit of 0.96. FE axial stiffnesses were 601 N/mm (Construct A), 849 N/mm (Construct B), and 1359 N/mm (Construct C). FE surface stress maps for cortical bone showed maximum von Mises values of 74 MPa (Construct A), 102 MPa (Construct B), and 57 MPa (Construct C). FE stress maps for the metallic components showed minimum von Mises values for Construct C, namely screw (716MPa), cable (445MPa), plate (548MPa), and hip implant (154MPa). In the case of good bone stock, as modelled by the present synthetic femur model, optimal fixation can be achieved with Construct C.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app