OPEN IN READ APP
COMPARATIVE STUDY
JOURNAL ARTICLE

Endocardial left ventricular pacing improves cardiac resynchronization therapy in chronic asynchronous infarction and heart failure models

Marc Strik, Leonard M Rademakers, Caroline J M van Deursen, Arne van Hunnik, Marion Kuiper, Catherine Klersy, Angelo Auricchio, Frits W Prinzen
Circulation. Arrhythmia and Electrophysiology 2012, 5 (1): 191-200
22062796

BACKGROUND: Studies in canine hearts with acute left bundle branch block (LBBB) showed that endocardial left ventricular (LV) pacing improves the efficacy of cardiac resynchronization therapy (CRT) compared with conventional epicardial LV pacing. The present study explores the efficacy of endocardial CRT in more compromised hearts and the mechanisms of such beneficial effects.

METHODS AND RESULTS: Measurements were performed in 22 dogs, 9 with acute LBBB, 7 with chronic LBBB combined with infarction (embolization; LBBB plus myocardial infarction, and concentric remodeling), and 6 with chronic LBBB and heart failure (rapid pacing, LBBB+HF, and eccentric remodeling). A head-to-head comparison was performed of the effects of endocardial and epicardial LV pacing at 8 sites. LV activation times were measured using ≈100 endocardial and epicardial electrodes and noncontact mapping. Pump function was assessed from right ventricular and LV pressures. Endocardial CRT resulted in better electric resynchronization than epicardial CRT in all models, although the benefit was larger in concentrically remodeled LBBB plus myocardial infarction than in eccentrically remodeled LBBB+HF hearts (19% versus 10%). In LBBB and LBBB+HF animals, endocardial conduction was ≈50% faster than epicardial conduction; in all models, transmural impulse conduction was ≈25% faster when pacing from the endocardium than from the epicardium. Hemodynamic effects were congruent with electric effects.

CONCLUSIONS: Endocardial CRT improves electric synchrony of activation and LV pump function compared with conventional epicardial CRT in compromised canine LBBB hearts. This benefit can be explained by a shorter path length along the endocardium and by faster circumferential and transmural impulse conduction during endocardial LV pacing.

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Available on the App Store

Available on the Play Store
Remove bar
Read by QxMD icon Read
22062796
×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"