Rapid microparticle patterning by enhanced dielectrophoresis effect on a double-layer electrode substrate

Wei Cheng, Si-Zhe Li, Qian Zeng, Xiao-Lei Yu, Yu Wang, Helen Lai Wah Chan, Wei Liu, Shi-Shang Guo, Xing-Zhong Zhao
Electrophoresis 2011, 32 (23): 3371-7
We present a feasible dielectrophoresis (DEP) approach for rapid patterning of microparticles on a reusable double-layer electrode substrate in microfluidics. Simulation analysis demonstrated that the DEP force was dramatically enhanced by the induced electric field on top interdigitated electrodes. By adjusting electric field intensity through the bottom electrodes on thin glass substrate (100 μm), polystyrene particles (10 μm) were effectively patterned by top electrodes within several seconds (<5 s). The particle average velocity can reach a maximum value of about 20.0±3.0 μm/s at 1 MHz with the strongest DEP force of 1.68 pN. This approach implements integration of functional electrodes into one substrate and avoids direct electrical connection to biological objects, providing a potential lab-on-chip system for biological applications.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"