Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Regulation of cotton fiber elongation by xyloglucan endotransglycosylase/hydrolase genes.

Ligon lintless mutant (li1li1) with super-short fibers (5-8 mm in length) and its wild type (Li1Li1) with normal fibers (30 mm in length) were used to study the function of xyloglucan endotransglycosylase/hydrolase (XTH) genes during fiber elongation in cotton. Wild-type cotton attained the fiber elongation stage earlier (5 days post-anthesis, DPA), than the Ligon lintless mutant (12 DPA) with a higher fiber elongation velocity of about 1.76 mm/day. Xyloglucan contents in Ligon lintless mutant fibers were 5-fold higher than the wild type during 9-15 DPA. It was also observed that the activity of XTH in wild-type cotton fibers was about 2-fold higher than that of the Ligon lintless mutant with a peak at 12 DPA. DNA blot analysis indicated that the XTH gene in the Ligon lintless mutant and its wild type belonged to a multiple allelic series. However, RNA blot analysis and quantitative real-time PCR exhibited an earlier expression (10 DPA) of XTH in wild type as compared to delayed (15 DPA) expression in the Ligon lintless mutant. The study also revealed that 9-15 DPA might be a key phase for upregulation of fiber elongation via increasing XTH activity. Higher XTH activity can cleave down the xyloglucan-cellulose chains thus loosening fiber cell wall and promoting fiber cell elongation in wild type as compared to its mutant.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app