Add like
Add dislike
Add to saved papers

Dual-frequency electrowetting: application to drop evaporation gauging within a digital microsystem.

This paper addresses a method to estimate the size of a sessile drop and to measure its evaporation kinetics by making use of both Michelson interferometry and coplanar electrowetting. From a high-frequency electrowetting voltage, the contact angle of the sessile droplet is monitored to permanently obtain a half-liquid sphere, thus complying perfectly with the drop evaporation theory based on a constant contact angle (Bexon, R.; Picknett, R. J. Colloid Interface Sci. 1977, 61, 336-350). Low-frequency modulation of the electrowetting actuation is also applied to cause droplet shape oscillations and capillary resonance. Interferometry allows us to measure a time-dependent capillary spectrum and, in particular, the shift in natural frequencies induced by drop evaporation. Consequently, diffusive kinetics of drop evaporation can be properly estimated, as demonstrated. Because of coplanar electrode configuration, our methodology can be integrated in open and covered microsystems, such as digital lab-on-a-chip devices.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app