JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

The effects of galanin on dorsal root ganglion neurons with high glucose treatment in vitro.

The exposure of neurons to high glucose concentrations is considered a determinant of diabetic neuropathy. The extracellular high concentration of glucose can cause neuronal cellular damage. Galanin (Gal) not only plays a role in processing of sensory information but also participates in energy homeostasis and glucoregulation. However, the effects of Gal on dorsal root ganglion (DRG) neurons with high glucose are not clear. Using an in vitro model of high glucose-treated DRG neurons in culture, the effects of Gal on intracellular reactive oxygen species (ROS) expression, cell viability, apoptosis, expression of Gal and its receptors (GalR1 and GalR2) of DRG neurons were investigated. Neurons were dissociated from embryonic day 15 (E15) rat DRG and cultured for 48 h and then maintained in serum-free neurobasal medium containing high glucose (45 mmol/L) or normal glucose (25 mmol/L) for 24h. Mannitol (20 mmol/L) was also used to create a high osmotic pressure mimicking the high glucose condition. The results showed that high glucose caused a rapid increasing of intracellular ROS, decreases of cell viability, and upregulation of Gal and its mRNA. Exogenous Gal (1 μmol/L) inhibited the above effects caused by high glucose. Interestingly, high glucose caused downregulation of GalR1 and its mRNA and administration of exogenous Gal could further decrease their expression, whereas expression of GalR2 and its mRNA was not affected at different experimental conditions. The results of the present study indicate for the first time that Gal and its receptor system are involved in high glucose-induced DRG neuronal injury. The contribution of exogenous Gal on neuroprotection appears to be quite significant. These results provide rationale and experimental evidence for development and further studies of Gal on therapeutic strategy for improving diabetic neuropathy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app