Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

p53 and microRNA-34 are suppressors of canonical Wnt signaling.

Although loss of p53 function and activation of canonical Wnt signaling cascades are frequently coupled in cancer, the links between these two pathways remain unclear. We report that p53 transactivated microRNA-34 (miR-34), which consequently suppressed the transcriptional activity of β-catenin-T cell factor and lymphoid enhancer factor (TCF/LEF) complexes by targeting the untranslated regions (UTRs) of a set of conserved targets in a network of genes encoding elements of the Wnt pathway. Loss of p53 function increased canonical Wnt signaling by alleviating miR-34-specific interactions with target UTRs, and miR-34 depletion relieved p53-mediated Wnt repression. Gene expression signatures reflecting the status of β-catenin-TCF/LEF transcriptional activity in breast cancer and pediatric neuroblastoma patients were correlated with p53 and miR-34 functional status. Loss of p53 or miR-34 contributed to neoplastic progression by triggering the Wnt-dependent, tissue-invasive activity of colorectal cancer cells. Further, during development, miR-34 interactions with the β-catenin UTR affected Xenopus body axis polarity and the expression of Wnt-dependent patterning genes. These data provide insight into the mechanisms by which a p53-miR-34 network restrains canonical Wnt signaling cascades in developing organisms and human cancer.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app