JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Enhanced propriospinal excitation from hand muscles to wrist flexors during reach-to-grasp in humans.

In humans, propriospinal neurons located at midcervical levels receive peripheral and corticospinal inputs and probably participate in the control of grip tasks, but their role in reaching movements, as observed in cats and primates, is still an open question. The effect of ulnar nerve stimulation on flexor carpi radialis (FCR) motor evoked potential (MEP) was tested during reaching tasks and tonic wrist flexion. Significant MEP facilitation was observed at the end of reach during reach-to-grasp but not during grasp, reach-to-point, or tonic contractions. MEP facilitation occurred at a longer interstimulus interval than expected for convergence of corticospinal and afferent volleys at motoneuron level and was not paralleled by a change in the H-reflex. These findings suggest convergence of the two volleys at propriospinal level. Ulnar-induced MEP facilitation was observed when conditioning stimuli were at 0.75 motor response threshold (MT), but not 1 MT. This favors an increased excitability of propriospinal neurons rather than depression of their feedback inhibition, as has been observed during tonic power grip tasks. It is suggested that the ulnar-induced facilitation of FCR MEP during reach may be due to descending activation of propriospinal neurons, assisting the early recruitment of large motoneurons for rapid movement. Because the feedback inhibitory control is still open, this excitation can be truncated by cutaneous inputs from the palmar side of the hand during grasp, thus assisting movement termination. It is concluded that the feedforward activation of propriospinal neurons and their feedback control may be involved in the internal model, motor planning, and online adjustments for reach-to-grasp movements in humans.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app