Add like
Add dislike
Add to saved papers

Trapping and two-photon fluorescence excitation of microscopic objects using ultrafast single-fiber optical tweezers.

Analysis of trapped microscopic objects using fluorescence and Raman spectroscopy is gaining considerable interest. We report on the development of single fiber ultrafast optical tweezers and its use in simultaneous two-photon fluorescence (TPF) excitation of trapped fluorescent microscopic objects. Using this method, trapping depth of a few centimeters was achieved inside a colloidal sample with TPF from the trapped particle being visible to the naked eye. Owing to the propagation distance of the Bessel-like beam emerging from the axicon-fiber tip, a relatively longer streak of fluorescence was observed along the microsphere length. The cone angle of the axicon was engineered so as to provide better trapping stability and high axial confinement of TPF. Trapping of the floating objects led to stable fluorescence emission intensity over a long period of time, suitable for spectroscopic measurements. Furthermore, the stability of the fiber optic trapping was confirmed by holding and maneuvering the fiber by hand so as to move the trapped fluorescent particle in three dimensions. Apart from miniaturization capability into lab-on-a-chip microfluidic devices, the proposed noninvasive microaxicon tipped optical fiber can be used in multifunctional mode for in-depth trapping, rotation, sorting, and ablation, as well as for two-photon fluorescence excitation of a motile sample.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app