JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Rapid isolation of adipose tissue-derived stem cells by the storage of lipoaspirates.

PURPOSE: This study examined a rapid isolation method decreasing the time and cost of the clinical application of adipose tissue-derived stem cells (ASCs).

MATERIALS AND METHODS: Aliquots (10 g) of the lipoaspirates were stored at 4°C without supplying oxygen or nutrients. At the indicated time points, the yield of mononuclear cells was evaluated and the stem cell population was counted by colony forming unit-fibroblast assays. Cell surface markers, stem cell-related transcription factors, and differentiation potentials of ASCs were analyzed.

RESULTS: When the lipoaspirates were stored at 4°C, the total yield of mononuclear cells decreased, but the stem cell population was enriched. These ASCs expressed CD44, CD73, CD90, CD105, and HLA-ABC but not CD14, CD31, CD34, CD45, CD117, CD133, and HLA-DR. The number of ASCs increased 1×10(14) fold for 120 days. ASCs differentiated into osteoblasts, adipocytes, muscle cells, or neuronal cells.

CONCLUSION: ASCs isolated from lipoaspirates and stored for 24 hours at 4°C have similar properties to ASCs isolated from fresh lipoaspirates. Our results suggest that ASCs can be isolated with high frequency by optimal storage at 4°C for 24 hours, and those ASCs are highly proliferative and multipotent, similar to ASCs isolated from fresh lipoaspirates. These ASCs can be useful for clinical application because they are time- and cost-efficient, and these cells maintain their stemness for a long time, like ASCs isolated from fresh lipoaspirates.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app