Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Aerobic remediation of petroleum sludge through soil supplementation: microbial community analysis.

The effect of soil concentration on the aerobic degradation of real-field petroleum sludge was studied in slurry phase reactor. Total petroleum hydrocarbons (TPH) and polycyclic aromatic hydrocarbons (PAHs) showed effective removal but found to depend on the soil concentration. Aromatic fraction (48.12%) documented effective degradation compared to aliphatics (47.31%), NSO (28.69%) and asphaltenes (26.66%). PAHs profile showed efficient degradation of twelve individual aromatic compounds where lower ring compounds showed relatively higher degradation efficiency compared to the higher ring compounds. The redox behaviour and dehydrogenase activity showed a linear increment with the degradation pattern. Microbial community composition and changes during bioremediation were studied using denaturing gradient gel electrophoresis (DGGE). Among the 12 organisms identified, Proteobacteria was found to be dominant representing 50% of the total population (25% of γ-proteobacteria; 16.6% of β-proteobacteria; 8.3% of α-proteobacteria), while 33.3% were of uncultured bacteria and 16.6% were of firmicutes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app