JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Three-dimensional measurements of the lower extremity in children and adolescents using a low-dose biplanar X-ray device.

OBJECTIVE: To evaluate three-dimensional (3D) measurements of the lower extremity using a biplanar low-dose X-ray device in children and adolescents.

METHODS: Firstly, 3D measurements of eight dried bones were analysed by a biplanar low-dose X-ray device (LDX) using stereoscopic software and compared with 3D computed tomography (CT). Secondly, 47 lower limbs of children and adolescents were studied using LDX two-dimensional (2D) and 3D measurements. Both parts were evaluated for femoral and tibial lengths and mechanical angles, frontal and lateral knee angulations, and the femoral neck-shaft angle.

RESULTS: The 3D specimen comparison between LDX and CT measurements showed no significant differences: femoral length (P = 0.069), tibial length (P = 0.059), femoral mechanical angle (P = 0.475), tibial mechanical angle (P = 0.067), frontal knee angulation (P = 0.198), lateral knee angulation (P = 0.646) and femoral neck-shaft angle (P = 0.068). The comparison between LDX 2D and 3D measurements showed significant differences in tibial length (P = 0.003), femoral mechanical angle (P < 0.001) and femoral neck-shaft angle (P = 0.001); other parameters were unremarkable.

CONCLUSIONS: The 3D LDX system presented reliable measurements compared with 3D CT. Differences between LDX 2D and 3D measurements were noted in the femoral mechanical angle, femoral neck-shaft angle and tibial length. Moderate to good interobserver agreement for the 3D LDX measurements were found.

KEY POINTS: Low radiation dose is essential when assessing potential lower extremity discrepancies. A new biplanar low-dose X-ray device can assess such discrepancies in children/adolescents. This LDX device provides equally reliable 3D measurements as prevalent practice LDX measurements carry good overall interobserver agreement.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app