JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Calcium-calmodulin kinase II mediates digitalis-induced arrhythmias.

BACKGROUND: Digitalis-induced Na(+) accumulation results in an increase in Ca(2+)(i) via the Na(+)/Ca(2+) exchanger, leading to enhanced sarcoplasmic reticulum (SR) Ca(2+) load, responsible for the positive inotropic and toxic arrhythmogenic effects of glycosides. A digitalis-induced increase in Ca(2+)(i) could also activate calcium-calmodulin kinase II (CaMKII), which has been shown to have proarrhythmic effects. Here, we investigate whether CaMKII underlies digitalis-induced arrhythmias and the subcellular mechanisms involved.

METHODS AND RESULTS: In paced rat ventricular myocytes (0.5 Hz), 50 μmol/L ouabain increased contraction amplitude by 160 ± 5%. In the absence of electric stimulation, ouabain promoted spontaneous contractile activity and Ca(2+) waves. Ouabain activated CaMKII (p-CaMKII), which phosphorylated its downstream targets, phospholamban (PLN) (Thr17) and ryanodine receptor (RyR) (Ser2814). Ouabain-induced spontaneous activity was prevented by inhibiting CaMKII with 2.5 μmol/L KN93 but not by 2.5 μmol/L of the inactive analog, KN92. Similar results were obtained using the CaMKII inhibitor, autocamtide-2 related inhibitory peptide (AIP) (1 to 2.5 μmol/L), and in myocytes from transgenic mice expressing SR-targeted AIP. Consistently, CaMKII overexpression exacerbated ouabain-induced spontaneous contractile activity. Ouabain was associated with an increase in SR Ca(2+) content and Ca(2+) spark frequency, indicative of enhanced SR Ca(2+) leak. KN93 suppressed the ouabain-induced increase in Ca(2+) spark frequency without affecting SR Ca(2+) content. Similar results were obtained with digoxin. In vivo, ouabain-induced arrhythmias were prevented by KN93 and absent in SR-AIP mice.

CONCLUSIONS: These results show for the first time that CaMKII mediates ouabain-induced arrhythmic/toxic effects. We suggest that CaMKII-dependent phosphorylation of the RyR, resulting in Ca(2+) leak from the SR, is the underlying mechanism involved.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app