Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Adenovirus-mediated expression of hypoxia-inducible factor 1α double mutant converts neonatal cardiac fibroblasts into (cardio)myocyte phenotype.

Adenovirus-mediated expression of hypoxia-inducible factor 1α double mutant (pAd-HIF-1α-Ala564-Ala803) can be effectively transfected into bone marrow stem cells (MSCs) in the MSCs and cardiomyocytes co-culture system at normoxia to regulate the expression of downstream target genes of hypoxia-inducible factor 1α (HIF-1α), which in turn can promote MSC differentiation into cardiomyocytes. Fibroblasts share common characteristics with MSCs such as the morphology, phenotype and differentiation potential. Therefore, we further studied whether the pAd-HIF-1α-Ala564-Ala803 also can convert neonatal rat cardiac fibroblasts (NCFs) into (cardio)myocyte phenotype via regulating the downstream target genes of HIF-1α at normoxia. The immunostaining analysis showed that NCFs treated with pAd-HIF-1α-Ala564-Ala803 exhibited higher protein expression levels of smooth muscle α-actin (SMA, myocyte marker) and cardiac troponin T (cTnT, cardiomyocyte marker), compared with phosphate-buffered saline and pAd-LacZ treatments. The reverse transcription-polymerase chain reaction results showed that NCFs transfected with pAd-HIF-1α-Ala564-Ala803 augmented messenger RNA (mRNA) expression of transforming growth factor-β1 (TGF-β1), Smad4, NKx2.5, GATA4, myocardin, SMA and cTnT. The effects of HIF-1α-Ala564-Ala803 on NCFs were attenuated by pre-transfection of TGF-β1 or myocardin small interference RNAs. Adult CFs transfected with pAd-HIF-1α-Ala564-Ala803 showed a lower protein expression of SMA but not cTnT without any change in the mRNA expression level of NKx2.5, myocardin. Therefore, NCFs but not adult CFs possess a similar differentiation potential to MSCs as evidenced by the fact that pAd-HIF-1α-Ala564-Ala803 can convert NCFs into (cardio)myocyte phenotype via regulating its downstream target genes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app