Comparative Study
Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Comparison of 3 Tesla proton MR spectroscopy, MR perfusion and MR diffusion for distinguishing glioma recurrence from posttreatment effects.

PURPOSE: To compare 3 Tesla (3T) multi-voxel and single-voxel proton MR spectroscopy (MRS), dynamic susceptibility contrast perfusion MRI (DSC), and diffusion-weighted MRI (DWI) for distinguishing recurrent glioma from postradiation injury.

MATERIALS AND METHODS: We reviewed all 3T MRS, DSC and DWI studies performed for suspicion of malignant glioma recurrence between October 2006 and December 2008. Maximum Cho/NAA and Cho/Cr peak-area and peak-height ratios were recorded for both multi-voxel and single-voxel MRS. Maximum cerebral blood volume (CBV) and minimum apparent diffusion coefficient (ADC) were normalized to white matter. Histopathology and clinical-radiologic follow-up served as reference standards. Receiver operating characteristic curves for each parameter were compared.

RESULTS: Forty lesions were classified as glioma recurrence (n = 30) or posttreatment effect (n = 10). Diagnostic performance was similar for CBV ratio (AUC = 0.917, P < 0.001), multi-voxel Cho/Cr peak-area (AUC = 0.913, P = 0.002), and multi-voxel Cho/NAA peak-height (AUC = 0.913, P = 0.002), while ADC ratio (AUC = 0.726, P = 0.035) did not appear to perform as well. Single-voxel MRS parameters did not reliably distinguish tumor recurrence from posttreatment effects.

CONCLUSION: A 3T DSC and multi-voxel MRS Cho/Cr peak-area and Cho/NAA peak-height appear to outperform DWI for distinguishing glioma recurrence from posttreatment effects. Single-voxel MRS parameters do not appear to distinguish glioma recurrence from posttreatment effects reliably, and therefore should not be used in place of multi-voxel MRS.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app