Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Effect of copper ion on adsorption of chlorinated phenols and 1-naphthylamine to surface-modified carbon nanotubes.

Understanding the adsorptive interactions between organic contaminants and carbon nanotubes (CNTs) is critical to both environmental applications and risk management of CNTs. The objective of the present study was to understand how transitional metal ions with strong complexing capabilities might affect the adsorption of hydroxyl- and amino-substituted aromatics to surface O-functionality-rich single-walled CNTs (O-SWNT) and N-functionality-rich single-walled CNTs (N-SWNT). Adsorption of 2,4-dichlorophenol, pentachlorophenol, and 1-naphthylamine to O-SWNT and N-SWNT can be significantly enhanced in the presence of Cu(II) (50 mg/L), whereas adsorption of 1,2-dichlorobenzene is essentially unaffected. The most likely mechanism for the Cu-enhanced adsorption is that Cu(II) serves as a bridging agent between organic solutes and the functional groups on CNT surfaces. For the adsorption of 1-naphthylamine to N-SWNT, an additional mechanism might be possible; that is, the complexation of Cu(II) with the N-functional groups of N-SWNT can change these groups from strong Lewis bases to Lewis acids and thereby significantly enhance adsorption via the mechanism of Lewis acid-base interactions. In addition, adsorption of Cu(II) can be significantly enhanced by the adsorption of organic cosolutes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app