Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

COP9 signalosome regulates autophagosome maturation.

Circulation 2011 November 9
BACKGROUND: Autophagy is essential to intracellular homeostasis and is involved in the pathophysiology of a variety of diseases. Mechanisms regulating selective autophagy remain poorly understood. The COP9 signalosome (CSN) is a conserved protein complex consisting of 8 subunits (CSN1 through CSN8), and is known to regulate the ubiquitin-proteasome system. However, it is unknown whether CSN plays a role in autophagy.

METHODS AND RESULTS: Marked increases in the LC3-II and p62 proteins were observed on Csn8 depletion in the cardiomyocytes of mouse hearts with cardiomyocyte-restricted knockout of the gene encoding CSN subunit 8 (CR-Csn8KO). The increases in autophagosomes were confirmed by probing with green fluorescent protein-LC3 and electron microscopy. Autophagic flux assessments revealed that defective autophagosome removal was the cause of autophagosome accumulation and occurred before a global ubiquitin-proteasome system impairment in Csn8-deficient hearts. Analyzing the prevalence of different stages of autophagic vacuoles revealed defective autophagosome maturation. Downregulation of Rab7 was found to colocalize strikingly with the autophagosome accumulation at the individual cardiomyocyte level. A significantly higher percent of cardiomyocytes with autophagosome accumulation underwent necrosis in CR-Csn8KO hearts. Long-term lysosomal inhibition with chloroquine induced cardiomyocyte necrosis in mice. Rab7 knockdown impaired autophagosome maturation of nonselective and selective autophagy and exacerbated cell death induced by proteasome inhibition in cultured cardiomyocytes.

CONCLUSIONS: Csn8/CSN is a central regulator in not only the proteasomal proteolytic pathway, but also selective autophagy. Likely through regulating the expression of Rab7, Csn8/CSN plays a critical role in autophagosome maturation. Impaired autophagosome maturation causes cardiomyocytes to undergo necrosis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app