Tumor necrosis factor-α elevates neurite outgrowth through an NF-κB-dependent pathway in cultured adult sensory neurons: Diminished expression in diabetes may contribute to sensory neuropathy

Ali Saleh, Darrell R Smith, Savitha Balakrishnan, Lori Dunn, Corina Martens, Christopher W Tweed, Paul Fernyhough
Brain Research 2011 November 14, 1423: 87-95
The presence of a proinflammatory environment in the sensory neuron axis in diabetes was tested by measuring levels of proinflammatory cytokines in lumbar dorsal root ganglia (DRG) and peripheral nerve from age matched control and streptozotocin (STZ)-induced diabetic rats. The levels of tumor necrosis factor-α (TNFα) and other cytokines were diminished in lumbar DRG from diabetic animals. Consequently, we tested the hypothesis that TNFα modulated axonal plasticity in adult sensory neurons and posited that impairments in this signal transduction pathway may underlie degeneration in diabetic sensory neuropathy. Cultured adult rat sensory neurons were grown under defined conditions and TNFα caused a dose-dependent 2-fold (P<0.05) elevation in neurite outgrowth. Neurons derived from 3 to 5month STZ-induced diabetic rats exhibited significantly reduced levels of neurite outgrowth in response to TNFα. TNFα enhanced NF-κB activity as assessed using Western blotting and plasmid reporter technology. Blockade of TNFα-induction of NF-κB activation caused inhibition of neurite outgrowth in cultured neurons. Immunofluorescent staining for NF-κB subunit p50 within neuronal nuclei revealed that medium to large diameter neurons were most susceptible to NF-κB inhibition and was associated with decreased neurite outgrowth. The results demonstrating reduced cytokine expression in DRG confirm that diabetic sensory neuropathy does not involve a neuroinflammatory component at this stage of the disease in experimental animal models. In addition, it is hypothesized that reduced TNFα expression in the DRG and possibly associated deficits in anterograde transport may contribute to impaired collatoral sprouting and regeneration in target tissue in type 1 diabetes.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"