JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Reproducibility of velocity-dependent power: before and after lengthening contractions.

The determination of power using isokinetic testing has been shown to be highly reliable. However, isotonic and isokinetic testing involve specific mechanical constraints that likely necessitate different neuromuscular strategies. Therefore, the purpose here was to establish test-retest intrarater reliability (separated by 7 days) of loaded maximal shortening velocity and velocity-dependent power of the ankle dorsiflexors using the isotonic mode of the Biodex dynamometer (i) at baseline and (ii) throughout recovery following 150 high-intensity lengthening contractions. Intraclass correlation coefficients (ICC)(2,1) with 95% CIs were used to determine relative reliability, whereas absolute reliability included typical error (TEM) and typical error expressed as a coefficient of variation (TEM(CV)). Twenty-four young men and women volunteered for the study. Maximal shortening velocity and power were determined with a fixed resistance set at 20% of maximal voluntary isometric contraction across 2 testing sessions separated by 7 days. ICCs were 0.93 and 0.98 for maximal shortening velocity and peak power, respectively. Following the lengthening contractions, ICCs indicated high reliability for maximal shortening velocity and peak power, 0.86 and 0.94, respectively, suggesting that a similar amount of fatigue was incurred on both days. Measures of absolute reliability for maximal shortening velocity and peak power also yielded high reliability. The isotonic mode is highly reliable when testing velocity-dependent power of the ankle dorsiflexors at baseline and following fatiguing lengthening contractions. The high reliability of this measure is encouraging and suggests that the isotonic mode can be used in various settings to track group changes before and after training and following fatigue and lengthening contractions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app