OPEN IN READ APP
JOURNAL ARTICLE

Septal deformation patterns delineate mechanical dyssynchrony and regional differences in contractility: analysis of patient data using a computer model

Geert E Leenders, Joost Lumens, Maarten J Cramer, Bart W L De Boeck, Pieter A Doevendans, Tammo Delhaas, Frits W Prinzen
Circulation. Heart Failure 2012, 5 (1): 87-96
21980078

BACKGROUND: Response to cardiac resynchronization therapy depends both on dyssynchrony and (regional) contractility. We hypothesized that septal deformation can be used to infer integrated information on dyssynchrony and regional contractility, and thereby predict cardiac resynchronization therapy response.

METHODS AND RESULTS: In 132 cardiac resynchronization therapy candidates with left bundle branch block (LBBB)-like electrocardiogram morphology (left ventricular ejection fraction 19±6%; QRS width 170±23 ms), longitudinal septal strain was assessed by speckle tracking echocardiography. To investigate the effects of dyssynchronous activation and differences in septal and left ventricular free wall contractility on septal deformation pattern, we used the CircAdapt computer model of the human heart and circulation. In the patients, 3 characteristic septal deformation patterns were identified: LBBB-1=double-peaked systolic shortening (n=28); LBBB-2=early systolic shortening followed by prominent systolic stretching (n=34); and LBBB-3=pseudonormal shortening with less pronounced late systolic stretch (n=70). LBBB-3 revealed more scar (2 [2-5] segments) compared with LBBB-1 and LBBB-2 (both 0 [0-1], P<0.05). In the model, imposing a time difference of activation between septum and left ventricular free wall resulted in pattern LBBB-1. This transformed into pattern LBBB-2 by additionally simulating septal hypocontractility, and into pattern LBBB-3 by imposing additional left ventricular free wall or global left ventricular hypocontractility. Improvement of left ventricular ejection fraction and reduction of left ventricular volumes after cardiac resynchronization therapy were most pronounced in LBBB-1 and worst in LBBB-3 patients.

CONCLUSIONS: A double-peaked systolic septal deformation pattern is characteristic for LBBB and results from intraventricular dyssynchrony. Abnormal contractility modifies this pattern. A computer model can be helpful in understanding septal deformation and predicting cardiac resynchronization therapy response.

Comments

You need to log in or sign up for an account to be able to comment.

No comments yet, be the first to post one!

Related Papers

Available on the App Store

Available on the Play Store
Remove bar
Read by QxMD icon Read
21980078
×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"