Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Specific detection of cysteine and homocysteine in biological fluids by tuning the pH values of fluorosurfactant-stabilized gold colloidal solution.

This study describes the use of 14 nm nonionic fluorosurfactant-capped gold nanoparticles (FSN-capped AuNPs) for the simultaneous detection of cysteine (Cys) and homocysteine (Hcy) using colorimetric method, requiring no use of separation techniques. It was found that the kinetics of Cys/Hcy-induced aggregation of the 14 nm FSN-capped AuNPs strongly depends on the pH value of gold colloidal solution. At a pH of 6.5, the Cys-induced aggregation kinetics of the FSN-capped AuNPs was almost identical to that induced by Hcy, facilitating simultaneous detection of total Cys and Hcy up to a concentration as low as 0.15 μM; while at pH 12.0, the kinetics of Cys-induced aggregation was much faster than that inducted by Hcy, leading to selective detection of Cys at concentration as low as 1.0 μM in the presence of Hcy. The applicability of the method was validated by spiking known amount of Cys and Hcy in human urine and plasma samples, obtaining a recovery of 95.4-105.5%. The present approach is simple, high selective and provides high reproducibility, and has a great potentiality in disease diagnosis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app