We have located links that may give you full text access.
JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
Unexplained drownings and the cardiac channelopathies: a molecular autopsy series.
Mayo Clinic Proceedings 2011 October
OBJECTIVE: To determine the prevalence and spectrum of mutations associated with long QT syndrome (LQTS) and catecholaminergic polymorphic ventricular tachycardia (CPVT) in a seemingly unexplained drowning cohort.
PATIENTS AND METHODS: From September 1, 1998, through October 31, 2010, 35 unexplained drowning victims (23 male and 12 female; mean ± SD age, 17±12 years [range, 4-69 years]) were referred for a cardiac channel molecular autopsy. Of these, 28 (20 male and 8 female) drowned while swimming, and 7 (3 male and 4 female) were bathtub submersions. Polymerase chain reaction, denaturing high-performance liquid chromatography, and DNA sequencing were used for a comprehensive mutational analysis of the 3 major LQTS-susceptibility genes (KCNQ1, KCNH2, and SCN5A), and a targeted analysis of the CPVT1-associated, RYR2-encoded cardiac ryanodine receptor was conducted.
RESULTS: Of the 28 victims of swimming-related drowning, 8 (28.6%) were mutation positive, including 2 with KCNQ1 mutations (L273F, AAPdel71-73 plus V524G) and 6 with RYR2 mutations (R414C, I419F, R1013Q, V2321A, R2401H, and V2475F). None of the bathtub victims were mutation positive. Of the 28 victims who drowned while swimming, women were more likely to be mutation positive than men (5/8 [62.5%] vs 3/20 [15%]; P=.02). Although none of the mutation-positive, swimming-related drowning victims had a premortem diagnosis of LQTS or CPVT, a family history of cardiac arrest, family history of prior drowning, or QT prolongation was present in 50%.
CONCLUSION: Nearly 30% of the victims of swimming-related drowning hosted a cardiac channel mutation. Genetic testing should be considered in the postmortem evaluation of an unexplained drowning, especially if a positive personal or family history is elicited.
PATIENTS AND METHODS: From September 1, 1998, through October 31, 2010, 35 unexplained drowning victims (23 male and 12 female; mean ± SD age, 17±12 years [range, 4-69 years]) were referred for a cardiac channel molecular autopsy. Of these, 28 (20 male and 8 female) drowned while swimming, and 7 (3 male and 4 female) were bathtub submersions. Polymerase chain reaction, denaturing high-performance liquid chromatography, and DNA sequencing were used for a comprehensive mutational analysis of the 3 major LQTS-susceptibility genes (KCNQ1, KCNH2, and SCN5A), and a targeted analysis of the CPVT1-associated, RYR2-encoded cardiac ryanodine receptor was conducted.
RESULTS: Of the 28 victims of swimming-related drowning, 8 (28.6%) were mutation positive, including 2 with KCNQ1 mutations (L273F, AAPdel71-73 plus V524G) and 6 with RYR2 mutations (R414C, I419F, R1013Q, V2321A, R2401H, and V2475F). None of the bathtub victims were mutation positive. Of the 28 victims who drowned while swimming, women were more likely to be mutation positive than men (5/8 [62.5%] vs 3/20 [15%]; P=.02). Although none of the mutation-positive, swimming-related drowning victims had a premortem diagnosis of LQTS or CPVT, a family history of cardiac arrest, family history of prior drowning, or QT prolongation was present in 50%.
CONCLUSION: Nearly 30% of the victims of swimming-related drowning hosted a cardiac channel mutation. Genetic testing should be considered in the postmortem evaluation of an unexplained drowning, especially if a positive personal or family history is elicited.
Full text links
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app
Read by QxMD is copyright © 2021 QxMD Software Inc. All rights reserved. By using this service, you agree to our terms of use and privacy policy.
You can now claim free CME credits for this literature searchClaim now
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app