Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Modulation of NKG2D-mediated cytotoxic functions of natural killer cells by viral protein R from HIV-1 primary isolates.

Journal of Virology 2011 December
HIV-1 viral protein R (Vpr) from laboratory-adapted virus strains activates the DNA damage/stress sensor ATR kinase and induces cell cycle arrest at the G(2)/M phase through a process that requires Vpr to engage the DDB1-CUL4A (VprBP/DCAF-1) E3 ligase complex. Activation of this DNA damage/stress checkpoint in G(2) by Vpr was shown to modulate NKG2D-dependent NK cell effector functions via enhancing expression of NKG2D ligands, notably ULBP2. However, it is unknown whether Vpr from HIV-1 primary isolates (groups M, N, O, and P) could modulate NKG2D-mediated cytotoxic functions of NK cells. Here, we report that Vpr from most HIV-1 primary isolates can upregulate ULBP2 expression and induce NKG2D-dependent NK cell killing. Importantly, these activities were always accompanied by an active G(2) cell cycle arrest function. Interestingly, Vpr variants from group P and a clade D isolate of group M were defective at enhancing NKG2D-mediated NK cell lysis owing to their inability to augment ULBP2 expression. However, distinct mechanisms were responsible for their failure to do so. While Vpr from group P was deficient in its ability to engage the DDB1-CUL4A (VprBP/DCAF-1) E3 ligase complex, the Vpr variant from group D was unable to properly localize to the nucleus, underlining the importance of these biological properties in Vpr function. In conclusion, the ability of Vpr from HIV-1 primary isolates to regulate NK cell effector function underscores the importance of this HIV-1 accessory protein in the modulation of the host's innate immune responses.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app