Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Chondrogenic differentiation of human bone marrow mesenchymal stem cells in chitosan-based scaffolds using a flow-perfusion bioreactor.

Native articular cartilage is subjected to synovial fluid flow during normal joint function. Thus, it is believed that the morphogenesis of articular cartilage may be positively regulated by the application of similar stimulation in vitro. In the present study, the effect of fluid flow over the chondrogenic differentiation of human bone marrow-derived mesenchymal stem cells (hBM-MSCs) was investigated. We intended to find out whether the shear stress caused by perfusion of the medium through the constructs was capable of augmenting the differentiation process. Human BMSCs were isolated from bone marrow aspirates and were characterized by flow cytometry. After expansion, hBM-MSCs were seeded statically onto fibre mesh scaffolds, consisting of a blend of 50:50 chitosan:poly(butylene terephthalate adipate) (CPBTA). Constructs were cultured in a flow-perfusion bioreactor for 28 days, using complete medium for chondrogenesis supplemented by TGFβ3. An enhanced ECM deposition and collagen type II production was observed in the bioreactor samples when compared to the static controls. Moreover, it was observed that hBM-MSCs, in static cultures, take longer to differentiate. ECM accumulation in these samples is lower than in the bioreactor sections, and there is a significant difference in the expression of collagen type I. We found that the flow-induced shear stress has a beneficial effect on the chondrogenic differentiation of hMSCs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app