Journal Article
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

Silica-dendrimer core-shell microspheres with encapsulated ultrasmall palladium nanoparticles: efficient and easily recyclable heterogeneous nanocatalysts.

We report the synthesis, characterization, and catalytic properties of novel monodisperse SiO(2)@Pd-PAMAM core-shell microspheres containing SiO(2) microsphere cores and PAMAM dendrimer-encapsulated Pd nanoparticle (Pd-PAMAM) shells. First, SiO(2) microspheres, which were prepared by the Stöber method, were functionalized with vinyl groups by grafting their surfaces with vinyltriethoxysilane (VTS). The vinyl groups were then converted into epoxides by using m-chloroperoxybenzoic acid. Upon treatment with amine-terminated G4 poly(amidoamine) (PAMAM) dendrimers, the SiO(2)-supported epoxides underwent ring-opening and gave SiO(2)@PAMAM core-shell microspheres. Pd nanoparticles within the cores of the SiO(2)-supported PAMAM dendrimers were synthesized by letting Pd(II) ions complex with the amine groups in the cores of the dendrimers and then reducing them into Pd(0) with NaBH(4). This produced the SiO(2)@Pd-PAMAM core-shell microspheres. The presence of the different functional groups on the materials was monitored by following the changes in FTIR spectra, elemental analyses, and weight losses on thermogravimetric traces. Transmission electron microscopy (TEM) images showed the presence of Pd nanoparticles with average size of 1.56 ± 0.67 nm on the surface of the monodisperse SiO(2)@Pd-PAMAM core-shell microspheres. The SiO(2)@Pd-PAMAM core-shell microspheres were successfully used as an easily recyclable catalyst for hydrogenation of various olefins, alkynes, keto, and nitro groups, giving ~100% conversion and high turnover numbers (TONs) under 10 bar H(2) pressure, at room temperature and in times ranging from 10 min to 3 h. In addition, the SiO(2)@Pd-PAMAM core-shell microspheres were proven to be recyclable catalysts up to five times with barely any leaching of palladium into the reaction mixture.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app