Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Acute and chronic effects of SGLT2 blockade on glomerular and tubular function in the early diabetic rat.

Tubuloglomerular feedback (TGF) stabilizes nephron function from minute to minute and adapts to different steady-state inputs to maintain this capability. Such adaptation inherently renders TGF less efficient at buffering long-term disturbances, but the magnitude of loss is unknown. We undertook the present study to measure the compromise between TGF and TGF adaptation in transition from acute to chronic decline in proximal reabsorption (Jprox). As a tool, we blocked proximal tubule sodium-glucose cotransport with the SGLT2 blocker dapagliflozin in hyperglycemic rats with early streptozotocin diabetes, a condition in which a large fraction of proximal fluid reabsorption owes to SGLT2. Dapagliflozin acutely reduced proximal reabsorption leading to a 70% increase in early distal chloride, a saturated TGF response, and a major reduction in single nephron glomerular filtration rate (SNGFR). Acute and chronic effects on Jprox were indistinguishable. Adaptations to 10-12 days of dapagiflozin included increased reabsorption by Henle's loop, which caused a partial relaxation in the increased tone exerted by TGF that could be explained without desensitization of TGF. In summary, TGF contributes to long-term fluid and salt balance by mediating a persistent decline in SNGFR as the kidney adapts to a sustained decrease in Jprox.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app