Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Heterogeneous catalytic reduction of anthropogenic pollutant, 4-nitrophenol by silver-bionanocomposite using Cylindrocladium floridanum.

In the present investigation, the silver-bionanocomposite with fcc structured Ag-nanocrystals was synthesized using the fungus, Cylindrocladium floridanum through a novel, environmentally benign biological process. Silver-bionanocomposite was systematically characterized by UV-Vis spectroscopy, XRD, SEM, EDX, and TEM techniques. TEM analysis of mycelia confirmed the presence of silver nanoparticles (AgNPs) on the outer surface of the cell wall and inner of cytoplasmic membrane of the fungus, when cultured in aqueous solution of AgNO3 at 30 °C for a period of 7 days in static condition. Additionally, it was observed that bionanocomposite with AgNPs functions as an efficient heterogeneous catalyst in the degradation of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP), in the presence of reducing agent, sodium borohydride which was reflected by UV-Vis spectra of the catalytic reaction kinetics. This is the first report of the silver-bionanocomposite using fungus, Cy. floridanum, heterogeneously catalyzing the reduction of a toxic pollutant, 4-NP to 4-AP.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app