ENGLISH ABSTRACT
JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

[Enhancement of osteoblastic differentiation of bone marrow mesenchymal stem cells in rats by sinusoidal electromagnetic fields].

The present research was aimed to investigate the effects of sinusoidal electromagnetic fields (SEMFs) on the proliferation and osteogenic differentiation of bone marrow mesenchymal stem cells in rats (rBMSCs) and to find out the intensity with the best therapeutic efficacy. Primary rat bone marrow mesenchymal stem cells were obtained from Wistar rats and screened by the adhesive method. The rBMSCs were exposed to sinusoidal electromagnetic fields with 50Hz frequency and intensities of 0 mT, 1.4 mT, 1.6 mT, 1.8 mT, 2.0 mT, and 2.2 mT respectively, 30 min per day. The proliferation of the rBMSCs was analyzed by MTT reduction assay. The osteogenic differentiation markers including ALP activity, calcium deposition, mineralized bone modulus and collagen I expression were compared between the rats in the exposed groups and those in the control group. The total cellular RNA was extracted after 6, 12, 24 and 48 hours, respectively. The gene expression of Osterix and IGF-1 was examined by quantitative reverse transcription-polymerase chain reaction (qRT-PCR). The absorbance of exposed groups was suppressed significantly in comparison with that in the control group. The exposure to the rBMSCs with intensity of 1.8 mT strongly enhances the osteogenic differentiation of rBMSCs, indicated by remarkably improved ALP activity, calcium deposition, collagen I expression and the number of mineralized bone nodules compared to that in the control group and other groups. Osterix and IGF-1 were also significantly improved (P < 0.05). The SEMFs with frequency and 50Hz and 1.4-2.2 mT intensities enhanced the osteogenic differentiation of rBMSCs, but inhibited their proliferation in the presence of 0.1% serum culture. Among the rBMSCs used in the tests, the one with 1.8 mT had the strongest activity, indicating that it could be the optimal intensity for the clinical application.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app