JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Differences in spatial distribution, morphology, and communities of herbivorous insects among three cytotypes of Solidago altissima (Asteraceae).

PREMISE OF THE STUDY: Polyploidy in plants can result in genetic isolation, ecological differences among cytotypes, and, ultimately, speciation. Cytotypes should be sympatric only if they are segregated in an ecological niche or through prezygotic isolation. We tested whether sympatric diploid, tetraploid, and hexaploid ramets of Solidago altissima L. (Asteraceae) differ in their ecological niche.

METHODS: We measured how cytotypes were distributed within habitats, their morphology, and the composition of their communities of herbivorous insects at 10 natural field sites. We also conducted a common garden experiment to confirm whether observed differences in morphology or communities of herbivores were due to cytotype or environmental effects.

KEY RESULTS: Diploid ramets often grew in open areas, relatively far from woody plants, and were associated with a high species richness of herbaceous plants, especially grasses. Hexaploids often grew in heavy shading under woody plants where grasses were scarce. Finally, tetraploids usually grew in transition areas between diploids and hexaploids. Hexaploid ramets also were taller than ramets of the other cytotypes and had larger leaves. Two species of insects, the leaf-galling fly Asteromyia carbonifera and the phloem-tapping aphid Uroleucon nigrotuberculatum, were more abundant on hexaploid ramets than on ramets of other cytotypes in the field. When grown in a common garden, however, cytotypes were similar in morphology and communities of herbivores.

CONCLUSIONS: We conclude that cytotypes of S. altissima differ in their spatial distribution within habitats and that spatial variation in environmental factors influence plant morphology and communities of herbivorous insects.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app