JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Methacrylate- and silorane-based composite restorations: hardness, depth of cure and interfacial gap formation as a function of the energy dose.

Dental Materials 2011 November
OBJECTIVES: To investigate the influence of the energy dose on the hardness, polymerization depth, and internal adaptation of silorane and methacrylate-based posterior composites in Class II restorations with different bonding approaches.

MATERIALS AND METHODS: Class II preparations were made on the mesial and distal surfaces of extracted third molars and randomly distributed into 6 groups (n=20), according to the restorative systems [methacrylate-based composite: Filtek P60+Adper Single Bond 2 (etch-and-rinse adhesive) - P60/SB; Filtek P60+Adper Easy One (self-etching adhesive) - P60/EO; silorane-based composite: Filtek P90+P90 System Adhesive - P90 (self-etching adhesive)] and the energy dose (20 and 40 J/cm(2)). Resin composites were applied in two increments, individually photoactivated using an LED light-curing unit. After 24 h, all restorations were mesio-distally sectioned. Hardness was evaluated along the transversal section of the fillings (1-4 mm below the restoration surface) using a load of 50 g for 5 s. In order to evaluate the internal gap formation, specimens were air dried and 1% acid red propylene glycol solution was applied to the internal margins for 20 s. Specimens were then water rinsed, air dried, and digitally image recorded. The internal gap (%) was calculated as the ratio between the stained margins and the total length of the internal margin. Kruskal-Wallis test was conducted to evaluate internal gap formation, and three-way ANOVA and Tukey's test were performed to evaluate hardness/polymerization depth (α=0.05).

RESULTS: Regarding the internal gap formation, a significant difference was observed among all groups (P60/EOP90; p<0.05). The highest energy dose (40 J/cm(2)) produced significant increase in the KHN only for Filtek P90 (p<0.05).

SIGNIFICANCE: Although a higher energy dose produces a slight increase in hardness for the silorane based composite, it also increases the internal gap formation. Dose of 20 J/cm(2) seems to be more suitable as it provides reduced internal gaps and satisfactory hardness. In addition, gap formation seems to be a consequence of an underperformed bonding approach rather than the differences in the resin-composite formulation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app