JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Animal models of bariatric/metabolic surgery shed light on the mechanisms of weight control and glucose homeostasis: view from the chair.

Bariatric/metabolic surgeries are remarkably effective in reducing weight over a sustained period of time, and they also have significant beneficial effects on glucose homeostasis. Interestingly, the metabolic benefits of these surgeries frequently occur before significant weight loss. Given these findings, it is perhaps not surprising that obesity researchers are asking, how does bariatric/metabolic surgery work? Establishing these mechanisms can offer new insights into the physiology of energy balance and the control of metabolism. In the second half of the 13(th) International Symposium of the Merck Frosst/CIHR Research Chair in Obesity, four papers that address the mechanisms of bariatric/metabolic surgery were presented. The papers that follow this viewpoint all make use of animal models to reveal the neurohumoral mechanisms underlying weight loss and improved glucose homeostasis after experimental bariatric surgery. The rodent models of the commonly used clinical procedures have shown that energy intake is increased, food reward is altered and that the proximal gut is important in the control of energy balance and glucose homeostasis. Taken together, these models shed light on the mechanisms of bariatric/metabolic surgery and offer new insights that, in the future, may lead to less invasive therapies.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app