Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Arabidopsis HsfB1 and HsfB2b act as repressors of the expression of heat-inducible Hsfs but positively regulate the acquired thermotolerance.

Plant Physiology 2011 November
Many eukaryotes have from one to three heat shock factors (Hsfs), but plants have more than 20 Hsfs, designated class A, B, and C. Class A Hsfs are activators of transcription, but details of the roles of individual Hsfs have not been fully characterized. We show here that Arabidopsis (Arabidopsis thaliana) HsfB1 and HsfB2b, members of class B, are transcriptional repressors and negatively regulate the expression of heat-inducible Hsfs (HsfA2, HsfA7a, HsfB1, and HsfB2b) and several heat shock protein genes. In hsfb1 hsfb2b double mutant plants, the expression of a large number of heat-inducible genes was enhanced in the non-heat condition (23°C) and the plants exhibited slightly higher heat tolerance at 42°C than the wild type, similar to Pro35S:HsfA2 plants. In addition, under extended heat stress conditions, expression of the heat-inducible Hsf genes remained consistently higher in hsfb1 hsfb2b than in the wild type. These data indicate that HsfB1 and HsfB2b suppress the general heat shock response under non-heat-stress conditions and in the attenuating period. On the other hand, HsfB1 and HsfB2b appear to be necessary for the expression of heat stress-inducible heat shock protein genes under heat stress conditions, which is necessary for acquired thermotolerance. We show that the heat stress response is finely regulated by activation and repression activities of Hsfs in Arabidopsis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app