JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Protease-activated receptor 2, rather than protease-activated receptor 1, contributes to the aggressive properties of synovial fibroblasts in rheumatoid arthritis.

OBJECTIVE: To investigate whether protease-activated receptor 1 (PAR-1) and/or PAR-2 promotes the invasiveness/proliferation of synovial fibroblasts (SFs) and to determine the signaling mechanisms of these pathways.

METHODS: SFs were isolated from the synovial tissue of patients with rheumatoid arthritis (RA), patients with osteoarthritis (OA), and PAR-1- or PAR-2-knockout (KO) mice. Expression of PAR-1 and PAR-2 was detected by immunofluorescence and Western blotting. The invasion and proliferation of SFs were measured by invasion assay and MTT assay, respectively. Matrix metalloproteinase 2 (MMP-2) and MMP-9 were detected by zymography, and cytokines were measured by enzyme-linked immunosorbent assay.

RESULTS: PAR-1 and PAR-2 were colocalized with SFs in RA and OA synovium and, to a considerably lesser extent, in normal synovium. Inhibition of PAR-2 by small interfering RNA (siRNA) inhibited RASF invasion and proliferation, whereas blocking of PAR-1 by siRNA had the reverse effects. SFs from PAR-2-KO mice exhibited slower rates of proliferation and invasion. SFs from PAR-1-KO mice produced less MMP-2 and, in response to tumor necrosis factor α (TNFα) stimulation, had increased MMP-9 secretion when compared to SFs from wild-type and PAR-2-KO mice. Inhibition of PAR-1, but not PAR-2, stimulated the secretion of interleukin-17 (IL-17) and TNFα by RASFs. Furthermore, PAR-1 and PAR-2 had opposing effects on the activation of ERK, p38, and NF-κB.

CONCLUSION: Activation of PAR-1 stimulates MMP-2 secretion, inhibits RASF growth and invasion, and decreases production of IL-17 and TNFα by RASFs, whereas activation of PAR-2 stimulates RASF growth and invasion and increases production of TNFα. Thus, although PAR-1 and PAR-2 are coexpressed by RASFs, PAR-2 alone appears to be responsible for the aggressive properties of RASFs and is likely to contribute to the pathologic progression of RA.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app