JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Rapid non-genomic signalling by 17β-oestradiol through c-Src involves mTOR-dependent expression of HIF-1α in breast cancer cells.

British Journal of Cancer 2011 September 28
BACKGROUND: Hypoxia-inducible factor 1 (HIF1) has been implicated in regulating many of the genes responsible for angiogenesis, erythropoiesis, glucose metabolism and cancer pathogenesis. In this study, we demonstrate that exposure of human breast cancer lines to 17β-oestradiol (E2) rapidly induced the expression of HIF-1α, the regulated subunit of HIF1, in normoxic condition. Hypoxia-inducible factor-1α is normally degraded in normoxia through ubiquitination-mediated proteolysis, whereas hypoxia modulates HIF-1α level by inhibiting ubiquitination-mediated degradation.

METHODS: Oestradiol-induced accumulation of HIF-1α in breast cancer lines was detected by western blot analysis and its promoter activity was measured by HIF1 reporter assay. Molecular signalling of oestradiol-mediated HIF-1α expression was studied using specific pharmacological inhibitors and small interference RNA by co-immunoprecipitation and western blotting analysis.

RESULTS: Oestradiol has been observed to rapidly activate the nongenomic signalling cascade leading to HIF-1α protein synthesis. The results define a signalling pathway in breast cancer cells whereby oestradiol induces a rapid protein-protein interaction of ERα-c-Src-PI3K, resulting in the activation of PI3K/AKT pathway leading to mammalian target of rapamycin (mTOR) phosphorylation. The mTOR then stimulates translation by phosphorylating p70 S6 kinase and 4EB-P1, modulating HIF-1α protein synthesis. Oestradiol-stimulated HIF-1α activity was inhibited by either siRNA or pharmacological inhibitors to ERα, c-Src, PI3K and mTOR, providing a mechanism for the modulation of HIF-1α protein synthesis.

CONCLUSION: These results show oestradiol-induced expression of HIF-1α, downstream of the ERα/c-Src/PI3K/AKT/mTOR pathway in human breast cancer cells.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app