JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Feeding by the newly described, nematocyst-bearing heterotrophic dinoflagellate Gyrodiniellum shiwhaense.

We explored the feeding ecology of the newly described, nematocyst-bearing heterotrophic dinoflagellate Gyrodiniellum shiwhaense (GenBank accession number=FR720082). Using several different types of microscopes and high-resolution video-microscopy, we investigated feeding behavior and types of prey species that G. shiwhaense feeds upon. Additionally, we measured its growth and ingestion rates on its optimal algal prey, the cryptophyte Teleaulax sp. and the dinoflagellate Amphidinium carterae, as a function of prey concentration. These rates were measured for other edible prey at single prey concentrations at which the growth and ingestion rates of G. shiwhaense were saturated. After anchoring the prey with a tow filament, G. shiwhaense fed using a peduncle, ingesting small algal species with equivalent spherical diameters (ESDs) of <13 μm. However, it did not feed on larger algal species that had ESDs≥13 μm or the small diatom Skeletonema costatum. The specific growth rates for G. shiwhaense feeding upon Teleaulax sp. and A. carterae increased rapidly with increasing mean prey concentration before saturating at concentrations of ca. 180-430 ng C/ml. The maximum specific growth rate of G. shiwhaense on Teleaulax sp. and A. carterae were 1.05 and 0.82/d, respectively. However, Heterosigma akashiwo did not support positive growth of G. shiwhaense. The maximum ingestion rates of G. shiwhaense on Teleaulax sp. and A. carterae were 0.35 and 0.54 ng C/grazer/d, respectively. The calculated grazing coefficients attributable to G. shiwhaense on co-occurring cryptophytes and Amphidinium spp. were 0.01-1.87/d and 0.08-2.60/d, respectively. Our results suggest that G. shiwhaense can have a considerable grazing impact on algal populations.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app