Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Electronic and structural properties of low-lying excited states of vitamin B12.

Time-dependent density functional theory (TD-DFT) has been applied to explore electronically excited states of vitamin B(12) (cyanocobalamin or CNCbl). To explain why the Co-C bond in CNCbl does not undergo photodissociation under conditions of simple photon excitation, electronically excited states have been computed along the Co-C(CN) stretched coordinate. It was found that the repulsive (3)(σ(Co-C) → σ*(Co-C)) triplet state drops in energy as the Co-C(CN) bond lengthens, but it does not become dissociative. Low-lying excited states were also computed as function of two axial bond lengths. Two energy minima have been located on the S(1)/CNCbl, as well as T(1)/CNCbl, surfaces. The full geometry optimization was carried out for each minimum and electronic properties associated with each optimized structure were analyzed in details. One minimum was described as excitation having mixed ππ*/MLCT (metal-to-ligand charge transfer) character, while the second as ligand-to-metal charge transfer (LMCT) transition. Neither of them, however, can be viewed as pure MLCT or LMCT transitions since additional excitation to or from σ-bonds (SB) of N-Co-C unit have also noticeable contributions. Inclusion of solvent altered the character of one of the excitations from ππ*/MLCT/SBLCT to ππ*/LMCT/LSBCT-type, and therefore, both of them gained significant contribution from LMCT/LSBCT transition. Finally, the nature of S(1) electronic state has been comparatively analyzed in CNCbl and MeCbl cobalamins.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app