Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Aminoguanidine, a selective nitric oxide synthase inhibitor, attenuates cyclophosphamide-induced renal damage by inhibiting protein nitration and poly(ADP-Ribose) polymerase activation.

BACKGROUND: Cyclophosphamide (CP) is an antineoplastic agent that is used for the treatment of many neoplastic diseases. Renal damage is one of the dose-limiting side effects of CP. Recent studies show that nitrosative stress plays an important role in CP-induced renal damage.

AIM: The purpose of our study was to investigate whether aminoguanidine (AG), a selective inducible nitric oxide synthase inhibitor, protects against CP-induced nitrosative stress and renal damage.

METHOD: Renal damage was induced in rats by administration of a single injection of CP at a dose of 150 mg/kg body weight intraperitoneally. For the AG pretreatment studies, the rats were injected intraperitoneally with AG at a dose of 200 mg/kg body weight 1 h before administration of CP. The control rats received AG or saline alone. All the rats were killed 16 h after the administration of CP or saline. Pretreatment with AG prevented CP-induced nitration of protein tyrosine and poly(ADP-ribose) polymerase (PARP) activation.

RESULT: Pretreatment with AG attenuated CP-induced renal damage. The present study demonstrates that AG is effective in preventing CP-induced renal damage and also that the protective effect is from its ability to inhibit nitric oxide-induced protein nitration and PARP activation.

CONCLUSION: The present study shows that AG can prevent CP-induced renal damage by inhibiting protein tyrosine nitration and PARP activation. Thus, a more efficient and comfortable therapy can be achieved for patients in need of CP treatment. AG appears to be a promising drug for the prevention of nephrotoxicity of CP.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app