JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Convenient immobilization of Pt-Sn bimetallic catalysts on nitrogen-doped carbon nanotubes for direct alcohol electrocatalytic oxidation.

Nanotechnology 2011 September 31
Pt-Sn alloy nanoparticles were conveniently immobilized on nitrogen-doped carbon nanotubes (NCNTs) through microwave-assisted ethylene glycol reduction. The nanoparticles have a narrow particle size distribution with the average particle size around 3 nm as measured by transmission electron microscopy and x-ray diffraction. The binding energy of metallic Sn passively shifts due to the charge transfer from Sn to Pt, as revealed by x-ray photoelectron spectroscopy. In comparison with the commercial Pt/C catalyst, Pt/NCNT presents a clear increase in activity for alcohol electro-oxidation due to the improved support, while the bimetallic Pt-Sn/NCNT has even higher activity owing to the alloying of Pt with Sn. Both Pt-Sn/NCNT and Pt/NCNT catalysts exhibit competitive long-term stability to Pt/C catalyst. The low cost, simple preparation and superior electrocatalytic performance indicate the great potential of Pt-Sn/NCNT in direct alcohol fuel cells.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app