JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

KDM6B/JMJD3 histone demethylase is induced by vitamin D and modulates its effects in colon cancer cells.

Human Molecular Genetics 2011 December 2
KDM6B/JMJD3 is a histone H3 lysine demethylase with an important gene regulatory role in development and physiology. Here, we show that human JMJD3 expression is induced by the active vitamin D metabolite 1α,25-dihydroxyvitamin D(3) (1,25(OH)(2)D(3)) and that JMJD3 modulates the gene regulatory action of this hormone. 1,25(OH)(2)D(3) activates the JMJD3 gene promoter and increases the level of JMJD3 RNA in human cancer cells. JMJD3 upregulation was strictly dependent on vitamin D receptor (VDR) expression and was abolished by cycloheximide. In SW480-ADH colon cancer cells, JMJD3 knockdown or expression of an inactive mutant JMJD3 fragment decreased the induction by 1,25(OH)(2)D(3) of several target genes and of an epithelial adhesive phenotype. Moreover, JMJD3 knockdown upregulated the epithelial-to-mesenchymal transition inducers SNAIL1 and ZEB1 and the mesenchymal markers fibronectin and LEF1, while it downregulated the epithelial proteins E-cadherin, Claudin-1 and Claudin-7. Additionally, JMJD3 knockdown abolished the nuclear export of β-catenin and the inhibition of β-catenin transcriptional activity caused by 1,25(OH)(2)D(3). Importantly, the expression of JMJD3 correlated directly with that of VDR and inversely with that of SNAI1 in a series of 96 human colon tumours. Our results indicate for the first time that an epigenetic gene coding for a histone demethylase such as JMJD3 is a VDR co-target that partially mediates the effects of 1,25(OH)(2)D(3) on human colon.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app