JOURNAL ARTICLE
REVIEW
Add like
Add dislike
Add to saved papers

Metabolism of glioma and IDH1/IDH2 mutations.

Revue Neurologique 2011 October
Many known oncogenic signaling pathways involved in gliomagenesis have strong consequences on tumor cell metabolism, and promote the switch from oxidative phosphorylation to aerobic glycolysis, for ATP generation. However, the interest on metabolism has been recently renewed by the discovery of recurrent mutation of IDH1 genes by systematic sequencing of a glioblastoma series. IDH1 encodes the cytoplasmic NADP dependent isocitrate dehydrogenase1 that catalyzes the oxidative decarboxylation of isocitrate into α-ketoglutarate. IDH1, more rarely IDH2, is mutated in 40% of gliomas (roughly 70% of low-grade gliomas, 50% of grade III, and 5 to 10% of primary glioblastomas). IDH1/IDH2 mutations are associated with genomic profile, being present in nearly all the 1p19q codeleted gliomas, and virtually absent in gliomas with EGFR amplification. It is a strong and independent predictor of survival, whatever grade considered. IDH1/IDH2 mutation results in a new enzymatic activity transforming α-ketoglutarate into 2-hydroxyglutarate (2-HG). The oncometabolite 2-HG accumulates in the cell and acts as a competitive inhibitor of many α-ketoglutarate dependent cellular reactions. The cellular consequences of this mutation offer potential targets for the development of novel therapeutics.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app