Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Middle-aged, but not young, rats develop cognitive impairment and cortical neurodegeneration following the four-vessel occlusion/internal carotid artery model of chronic cerebral hypoperfusion.

Permanent, stepwise occlusion of the vertebral arteries (VAs) and internal carotid arteries (ICAs) following the sequence VA→ICA→ICA, with an interstage interval (ISI, →) of 7 days, has been investigated as a four-vessel occlusion (4-VO)/ICA model of chronic cerebral hypoperfusion. This model has the advantage of not causing retinal damage. In young rats, however, 4-VO/ICA with an ISI of 7 days fails to cause behavioral sequelae. We hypothesized that such a long ISI would allow the brain to efficiently compensate for cerebral hypoperfusion, preventing the occurrence of cognitive impairment and neurodegeneration. The present study evaluated whether brain neurodegeneration and learning/memory deficits can be expressed by reducing the length of the ISI and whether aging influences the outcome. Young, male Wistar rats were subjected to 4-VO/ICA with different ISIs (5, 4, 3 or 2 days). An ISI of 4 days was used in middle-aged rats. Ninety days after 4-VO/ICA, the rats were tested for learning/memory impairment in a modified radial maze and then examined for neurodegeneration of the hippocampus and cerebral cortex. Regardless of the ISI, young rats were not cognitively impaired, although hippocampal damage was evident. Learning/memory deficits and hippocampal and cortical neurodegeneration occurred in middle-aged rats. The data indicate that 4-VO/ICA has no impact on the capacity of young rats to learn the radial maze task, despite 51% hippocampal cell death. Such resistance is lost in middle-aged animals, for which the most extensive neurodegeneration observed in both the hippocampus and cerebral cortex may be responsible.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app